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1 Introduction

Context and Prior results. The resolution of multivariate polynomial
systems is a major issue in many domains as cryptography [12] and robotics
[13] for example. A geometric algebra approach to this NP-Hard problem
is to consider that a system of polynomial equations is associated with an
ideal of K[xq,...,z,]. A Grobner basis of an ideal is essentially an equiva-
lent polynomial system that has a triangular structure which makes it much
easier to solve . This point of view raises questions such as the unique repre-
sentation of a polynomial in the quotient ring K[zy,...,x,]/I. The notion
of Grobner basis also depends on an ordering on monomials. This allows to
define the leading terms of a multivariate polynomial and a division algo-
rithm. The first algorithm to compute Grébner basis have been introduced
by Buchberger in 1965 [1]. His idea was to consider some pairs of polyno-
mials and to consider the reduction of S-polynomials. Later, in 1983, D.
Lazard has proposed an algorithm in [15] to compute Grébner basis using
tools of computational linear algebra. The linearization of this problem
is made by building a large matrix with entries in K and computing its
echelon form. One of the major result is the Macaulay bound form Lazard
[15], it gives an explicit degree D that majorize the size of the Matrix in
Lazard’s algorithm with a hypothesis that the sequence (fi, ..., fs) is regu-
lar. Another of the hypothesis to use this bound is to work with the grevlex

ordering. The original Lazard’s algorithm uses O ((D:L)w_ln(D ’Z*")) op-

erations in K to compute a Groébner basis where d is the degree of the
considered polynomials under the above assumption.

By combining the ideas of those two algorithms, Faugére created the
Algorithm 4 in 1998 [9], a new algorithm that performs much better than
the previous ones in practice. In 2002, the Algorithm F5 has been proposed

by Faugeére that cost O ((DJ“g*l)w) operations in K [10] . The advantage

of F5 is that the matrices have full rank generically.

The goal of the internship is to create a version of Lazard’s algorithm
that uses univariate matrices with entries in Kiz,]. Such matrices are
smaller as one of the variables is in the matrices.

The Popov’s forms of univariate matrices are the generalizations of the
row echelon form for matrices with entries in K. For a matrix of degree d
in K[t]"*¢, the computation of its Popov form takes O~ (r*~!c(d+ amp(s)))
with s a row vector called the shift which is a parameter of the Popov’s
form |16, Section 1,Section 5.1]. The price of the computation of Popov’s
forms is obviously higher than for the row echelon form but the structure
of the matrices in K[x,] and the distribution of the degree in them offer a
lot of ideas for some improvements.

As Lazard’s Algorithm use the row echelon form, it is natural to consider



Popov’s forms to adapt this algorithm. This idea come from a recent work
by Berthomieu, Neiger and Safey El Din on change of order algorithms
for Grobner basis [3]. This work go forward the FGLM Algorithm which
change the order of a Grobner basis by considering a link between the
multiplication matrices and univariate matrices that are in a Popov’s form.

Contribution. One of the main results of this internship is the follow-
ing theorem that shows a fundamental relation between Popov’s form and
Grobner basis.

Theorem 1. Let I be an ideal of Klxy, ..., zy,t], let >=grest be the greviex
ordering on the ring Klxy,...,x,,t] and >y the grevlex ordering on
Klzy,...,2z,). Let (g1,--.,9¢) be a Grobner basis of (I, > griext). Then the
representative matriz of G is in s-weak-Popov form.

The adaptation of Lazard’s algorithm is the Algorithm 4 given in Sec-
tion 4.2 and it uses the s-Popov form with s the shift described in the above
theorem. Finally, the number of operations in K for this new algorithm is
discribed in the following theorem.

Theorem 2. Let F' = (f1,..., fo) be a regular sequence of polynomials in
Klzq,...,x,) with deg(f;) = d;. Suppose (fi,..., fi) is zero dimensional.
Write D = S2'_ (d; — 1) + 1. The number of operations in K that Algo-
rithm 4 uses s

o (P (i) ).

The ratio between the complexity of the classical Lazard’s algorithm
above and the new algorithm underneath is nearly dwn—fl. This improves on
the state of art for families of problems of fixed number of variables and
increasing degree.

Perspectives. There is still some work on this algorithm to do, we have
good reason to think that we could obtain d“~! as new ratio for future
algorithm. It came from the complexity of s-Popov form when s is zero.
With genericity hypothesis, the shift zero could be used thanks to the row
echeloned by block structure of the Macaulay matrix. Moreover, there
exists some results of complexity that uses the averge degree on columns
which could improve the complexity of Algorithm 4 [19].

Structure of the document. Section 2 is devoted to preliminaries on
polynomial matrices and Grébner basis. Section 3 introduces different ver-
sions of Lazard’s algorithm and its complexity. Section 4 generalizes the
algorithm for polynomial matrices by explaining the link between monomial
ordering and Popov form.



2 Basic definitions and preliminary results

2.1 Echelon forms of matrices over a field

For this subsection, we refer the reader to [7] for more details. Let K be
a field. The set of matrices over K with r rows and ¢ columns is written
K’FXC.

Definition 2.1. A matriz M € K"™¢ is in row echelon form if
1) Each zero row of the matriz is below all the nonzero rows.
2) On each nonzero row, the leftmost nonzero entry is strictly to the
right of those of the rows above. Those entries are called pivots of
the matrixz M.
Moreover, the matriz M is in reduced row echelon form if Items 1) and 2)
hold and
3) In each column that contains a pivot, all entries other than this pivot
are zeros.
4) All pivots are equal to 1.

In particular, a nonzero row vector A = (a;)1<i<c € K'™¢ is in row
echelon form. There exists iy € {1,...,c} such that a;, is the pivot of A.
By Gaussian elimination, every matrix can be row echelonized.

Proposition-Definition 2.2. Let M be in K"*¢. There exists a matriz A
in K™ gnvertible such that AM is in row echelon form. In that case, we
call AM a row echelon form of M. If the product AM 1is in reduced row
echelon form, it is a reduced row echelon form of M.

This theorem can be found in |7, Theorem 1.2].

Theorem 2.3. Let M be in K"*¢. There exists a unique reduced row ech-
elon form of M.

PI'OpOSitiOl’l 2.4. Let M = (mi7j>1gigr7lgjgc be in K™*¢ gnd A = (ai)lgig
be a vector in K", Suppose that the matriz M is in row echelon form. If
the pivot of the vector B = AM = (bj)1<;<. is bj, for some jo € {1,...,c},
then there exists ig € {1,...,r} such that m, ;, is a pivot of M.

Proof. Foriin {1,...,7}, write M; € K'*¢ for the i-th row of the matrix M,
so that AM =37 a;M;. Let E| be the subset of {1,...,r} that contains

all row indices of pivots of M whose column indices are in {1,...,j0 — 1}.
Let F5 be the subset of {1,...,r} that contains all row indices of pivots of
M whose column indices are in {jo, ...,c}. Then we can write :
AM = Z a; M; + Z a; M.
i€ B 1€ b

By considering the smallest element of F;, and using the fact that pivot
indices in M are increasing, we see that the first sum is zero. By considering
the smallest element of Fy and calling it 79, we are done. O
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2.2 Hermite forms of polynomial matrices

In this subsection, we introduce some notions about polynomial matrices,
which are matrices with univariate polynomial entries. Let K be a field.
We write K[¢]™¢ the set of univariate polynomial matrices with r rows and
¢ columns and entries in K[t]. The following definition can be found in |17,
Definition 1].

Definition 2.5. Let M be in K[t]"™¢. The matriz M is said to be in weak-
Hermite form if
1) Each zero row of the matriz is below all the nonzero rows.
2) On each nonzero row, the leftmost nonzero entry is strictly to the
right of those of the rows above. Those entries are called pivots of
the matriz M.
Moreover, the matriz M is in reduced row echelon form if Items 1)
and 2) hold and
3) All other entries on a column that contain a pivot have lower degrees
than the pivot.
4) All pivots are monic.

Note that the name “weak-Hermite” does not appear in the literature,
this has been chosen to make a parallel with Section 2.3.

Example 2.6. The matriz My € Q[t|*** is in weak-Hermite form:

t+1 2 +2t t?+1 7
M, = 0 0 2t At
0 0 0 t*—1

but it is not in Hermite form because neither Item 3) nor Item /) holds.
Indeed deg(2t) < deg(t* + 1) and 2t is not monic in the third column.

A square matrix A in K[¢]™" is said to be unimodular if it is invertible
over K[t] (i.e., A~! has entries in K[t], or equivalently, det(A) € K\ {0}).
It is said to be nonsingular if it is invertible over the field of fractions K(t),
or equivalently, if det(A) € K[t] \ {0}.

Proposition-Definition 2.7. Let M be in K[t|"*¢. There ezists a uni-
modular matriz A in K[t]"™*" such that AM is in weak-Hermite form. In
that case, we call AM a weak-Hermite form of M. If AM is in Hermite
form, it 1s a Hermite form of M.

Example 2.8. Let M be in Q[t]*** and A be in Q[t]>*3:

t+1 242t 241 7 1 00
M = 0 0 2t At and A=10 1 0
2+t 3422 B34+t tr4Tt—1 —t 0 1
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The matriz M is not in weak-Hermite form but:

t+1 ?+2t t?+1 7
M, =AM = 0 0 2t 4t
0 0 0 tt—1

15 in weak-Hermite form.
The following theorem can be found in [17, Theorem 1].

Theorem 2.9. Let M be in K[t]"°. There ezists a unique Hermite form
of M.

Example 2.10. The matriz M, is a weak-Hermite form of M but not the
Hermite form of M. We can get the Hermite form as follows :

1 —3t 0\ [t+1 £+2t 241 7
My=1{0 5 0 0 0 2t At
0 0 1 0 0 0 tt-1
t+1 242t 1 =202 +7
=| O 0 ¢ 2t
0 0 0 =1

The matriz My € Q[t]3** is the unique Hermite form of M.

rXc

Proposition 2.11. The rows of a matriz M in K[t]"™° generate a K[t]-
submodule of K[t|'*¢. If A € K[t|"™" is unimodular, then the rows of AM
generates the same K[t]-submodule as those of M.

Proof. Let N = AM, the rows of N are K[t]-linear combinations of rows of
M. Then the K[t]-submodule generated by the rows of N is included in the
K[t]-submodule generated by the rows of M. We have the other inclusion
by the same argument using A~'N = M, where A~! € K[t]"*" since the
matrix A is unimodular. O

S0l >

(aj)i<j<r be in K[t]™". Suppose that M is in weak-Hermite form. If the
pivot of the vector B = AM = (b;)1<j<c s bj, for some jo € {1,...,c},
then there exists i € {1,...,r} such that m, j, is a pivot of M. Moreover,
the inequality deg(b;,) > deg(my, j,) holds.

Proof. Using the same arguments as those in the proof of Proposition 2.4,
we get

AM =Y " aiMi+ > aiMy = ai, My, + Y a;M;,

i€E 1€E> 1€BE2\{io}



where E is the subset of {1,...,r} that contains all row indices of pivots of
M whose column indices are in {1, ..., jo—1}, Es is the subset of {1,...,7}
that contains all row indices of pivots of M whose column indices are in
{Jjo,-..,c}, and iy is the smallest element of E,. By definition of a pivot
we have that for all i € E5\{io}, the entry m, j, is zero. Then we see that
bj = QMg 505 hence deg(bj ) = deg<mio,jo) + deg(aio)' [

2.3 Shifted Popov forms of polynomial matrices

For more details on the notion of Popov’s forms, we refer the reader to
[16]. Popov’s forms are a generalization of Hermite form, in [16, chapter
2] you can see that the Hermite form of a matrix can be seen as a Popov
form. The row echelon form is an essential tool for Lazard’s algorithm and
Popov’s forms are a generalization of the row echelon form. We can then
establish a relation between Popov’s forms and Grébner basis.

Stxhls) >

of M is the vector rdegy(M) = (dy, . ..,d,) where

d; = r{nax (deg(m; ;) € NU {—o0}.
Je

Example 2.14. Let M, € Q[t]>** be the Hermite form of M:

t+1 242t 1 —212+7
M, = 0 0 t 2t
0 0 0 -1

The row degree of M, is the row vector
rdegO(M) = (2a 17 4)

Definition 2.15. Let M be in K[t]"*¢. A shift s = (s1,...,8.) is an
element of Z'*¢. We define amp(s) = max(sy, ..., S.) — min(sy,...,S.).

Ui xS >

.....

s-row degree of M is the vector rdeg,(M) = (dy,...,d,).
Example 2.17. Let s = (4,2,0,1) be a shift,

t4+1 242t 1 =202 +7
My=1 0 0 ¢ 2t € Q**+.
0 0 0 -1

The s-row degree of the matriz My is the row vector

rdeg (M) = (5,2,5).
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Ul >

the leading coefficient of the polynomial m; ;, let s € Z'*¢ and rdeg (M) =
(dy,...,d,). The leading matrix of M for the shift s is L = LMy(M) =
(fi,j)1<i<rl<j<c with Ei,j =0 Zf deg(mm) + Sj < dl and Ei,j = ai,j Zf

deg(ﬂ;i,;)LiT gj = d;. For the polynomial 0, the leading coefficient is 0
by convention.
Example 2.19. Let us consider the shift s = (3,2,0,1) and the matrix

t4+1 242t 1 =22 +7
M, = 0 0 t 2t
0 0 0 -1

The s-row degree of My for the shift s is the row vector
rdeg, (M) = (4,2,5).

The leading matriz of M for the shift s is the matriz

11
LM,(M)= 10 0
0 0

o O O

0
2
1

Definition 2.20. Let M be in K[t]"*c. If LMy(M) is full rank, then the
matriz M 1s said to be s-reduced.

exhlsJ >

el >

echelonized. If {; ; is a pivot of LMy(M), we call the entry m;; a s-pivot
of M.

Ul >

Popov form with s € Z'*¢ if
1) The matriz M is in s-weak-Popov form.
2) For each pivot m;; of M, We have deg(m;;) > deg(my,;) for all
indices k in {1,...,r}\{i}.
3) All pivots are monic.

Proposition 2.23. Let M be in K[t]"™*¢ and s in Z'*¢. There exists a
matriz A in K[t|”" unimodular such that AM is in s-weak-Popov form.
We call AM a s-weak-Popov form of M. If AM is in s-Popov form, it is
a s-Popov form of M.

The following theorem can be found in [2, page 716 theorem 2.7|.

Theorem 2.24. Let M be in K[t]"¢ and s € Z'*°. There exists a unique
s-Popov form of M.



Ul >

(a;)1<i<r @ vector in K[t]"" with A # 0. Suppose that M is in s-weak-
Popov form with s in 7Z'*¢ and M has no zero row. Write the vector
B = AM = (b)i1<i<c and o : {1,...,r} — {1,...,c} the application such
that the entry m; ) is a s-piwot of M. Let ig be the smallest integer of the
set
E={ie{l,...,r}|d; +deg(a;) = max
ke{l

77777

T}(d’“ + deg(ax))}

Then
(i) The equality

deg(ba(io)) = deg<ai0> + deg(mio,a(io)>'
(ii) The entry by, is the s-pivot of the vector AM.

Proof of Item (i). First, as M and A have no zero row, there exists k in

-----

is positive. Moreover, & # ) so iy is well defined. Let us write the s-
row degree rdeg (M) = (dy,...d,). By the definition of a s-pivot, we
have the equality d; = deg(m; o)) + So(;) because M is s-weak Popov.
AS bo(ip) = Y oiq @i o(ig), then we need to show that for all indices i in

{1,...,7}\{io} :
deg(a;) + deg(m; o)) < deg(as,) + deg(mig o(i))-

o Ific {ig+1,...,r}, then d;+deg(a;) < d;, +deg(a;,) because iy € £
and 54(;y) +deg(m; s z,)) < d; because M is in s-weak-Popov form and
o(ip) < o(i). So we can write:

deg(a;) + deg(m o(io)) + So(io) < deg(a;) + d;
< deg(ai,) + di-
As deg(ay,) + d;, = deg(as,) + deg(miy o)) + So(i) by the definition
of d;,, then :
deg(a;) + deg(mio(i0)) + So(ie) < deg(asy) + deg(mi o(i)) + Soio)
which implies that
deg(a;) + deg(m; o)) < deg(as,) + deg(migo(i))-
o If we havei € {1,...,ig—1}, it holds that deg(a;)+d; < deg(a;,)+d;,
because ¢ is not an element of F as iy is the smallest integer of E.

By the definition of d;, it holds that deg(m; () + iy < di. So we
can write:

deg(a;) + deg(mi 0i0)) + So(in) < deg(as) + d;
< deg(aio) + dio'



As deg(aio> + dio = deg(aio) + deg(mio,a(io)) + So(io)s then :

deg(a;) + deg(mig(iy)) + So(io) < deglai,) + deg(miy o(is)) + So(io)
which implies that
deg(a;) + deg(m; oao)) < deg(as,) + deg(mig (o))

We deduce that deg(by(i,)) = deg(aq,) + deg(mig o))
Il

Proof of Item (ii). Let us compare deg(b;) + s; and deg(by(iy)) + So(i) for
jin {1,...,c}.
o If jisin {o(ip) +1,...,c}, as b; = > ;_, a;m; j, then we can write:

7777 T}
< max (d; + deg(a;))
te{l,...,r}

so it holds that deg(b;) + s; < d;, + deg(a;,). By Lemma 2.25, the
following equalities hold:

dip + deg(aiy) = So(io) + deg(mig o (ip)) + deg(ai,) = deg(bo(ip)) + Soio)-

We deduce that deg(b;) + s; < deg(bo(i)) + So(io)-
e If jisin {1,...,0(ip) — 1}, we need to show that:

deg(b;) + s; < deg(boio)) + Soio)-
As b; = >0 a;m;;, then we can write

deg(b;) +s; < r{rllax (deg(m; ;) + deg(a;) + s;).
1€

We need to show that for all i € {1,... r}:
deg(m; ;) + deg(a;) + s; < deg(bo(ip)) + Soio)-
First, if 1 € {1,...,ip — 1}:

deg(m; ;) + deg(a;) + s; < deg(a;) + d;
< deg(ay,) + diy, as i < .

As d;, + deg(ai,) = deg(bs(iy)) + So(iy)» then

deg(mi,j) + deg(a,) + S < deg(ba(io)) + Sa(io)‘

10



Ifi e {ig,...,r}:

deg(m; ;) + deg(a;) + s; <deg(a;) + d;, as j < o(i)
< deg(ai) + di-

As d;, + deg(ai,) = deg(bo(iy)) + So(io), then
deg(m; ;) + deg(a;) + s; < deg(bo(ig)) + Solip)-

As for all j € {o(ip) + 1,...,c}, deg(b;) + s; < deg(bo(ip)) + So(io) and for
all j € {1,...,0(io) — 1}, deg(b;) + 55 < deg(bo(i)) + So(io), then oy is
the s-pivot of the vector AM.

[

Proposition 2.26. Let M = (m; )i<i<ri<j<c be a matriz in K[t]"*¢ and
A = (a;)1<i<r be a vector in K[t]'" with A # 0. Suppose that M is in
s-weak-Popov form with s in Z'*¢ and M have no zero row. Write the
vector B = AM = (b;)1<i<c- If bj, is the s-pivot of B, then there exists
io € {1,...,7} such that m,, j, is a s-pivot of M and deg(bj,) > deg(mi, j,)-

Proof. The first assertion is a restatement of Item (ii) of Lemma 2.25. We
have to prove that deg(by(iy)) > deg(mi; o(i)). By Item (i) of Lemma 2.25
we have the equality deg(b,(i,)) = deg(miy (i) +deg(as,). We have already
seen that maxyeqi,. 1 (dy+deg(a)) is positive in the beginning of the proof
of Item (i) and by hypothesis we have iqg € E. Then deg(a;,) is positive.
[

2.4 Admissible monomial orderings

For more details on admissible monomial orderings, we refer the reader
to |8, chapter 2]. Let K be a field and consider the polynomial ring
Klzy,...,2,). Let @ = (aq,...,0a,) be a vector in N", the monomial
[T, = is written = and |a] = >, | ; is its degree.

Definition 2.27. An admissible monomial ordering > is a total ordering
on the monomials such that

(i) If x> = xP then for any v € N* we have Y = 2P+,

(ii) Every nonempty subset of N* has a smallest element for ».
For a total order on monomial of K[xy,..., x,] that respects Item (i),
Item (ii) is equivalent to the following assertion: for any a,B € N", if
x® divides P then xP = x.
Notation 2.28. For a polynomial p and an admissible monomial order-
ing = we write lm, (p),1t.(p) and le.(p) the leading monomial, term and
coefficient of p w.r.t .

11



Definition 2.29. An admissible monomial ordering = on Klxq,..., x,]
is called an elimination ordering in {zy,...,x,} with k € {1,... ,n} if
for all polynomials f in Klxy, ..., z,], Im(f) € Klxg, ..., x,] implies that
feKzg, ...,z

Definition 2.30. Consider two disjoint sets of variables {xy,...,z,} and
{y1,. .., Ym} with admissible monomial orderings >, and =, on each. We
define the admissible monomial ordering (>, >,) = > on monomials of
Kz, ..., Tn, Y1,y - - - Ym] as follows.

Let the following exponents o, B, be in N" and oy, B, be in N™. Let
x%y® gnd xP=yPv be two monomials, Ty < xPeyPv if and only if
one of the two assertions that follow is true:

o x% <, xPs

o % = P and y™ <, yP.

Moreover, the ordering > is an elimination ordering in the variables
Wi, Ym}-

Definition 2.31. An admissible monomial ordering = on K|xy, ..., xz,] is
said to be a graded ordering if for all monomials x>, xP:

deg(x®) > deg(xP) implies that x* = xP.

Definition 2.32. The grevlex ordering or drl ordering on Kz, ..., x,] is
an admissible monomial ordering defined as follows.
For a = (aq,...,ap) and B = (B1,...,Bs), two monomials x* and xP,

T < yex TP if and only if one of the following assertions is satisfied:
o deg(xP) > deg(z®),
o deg(xP) = deg(x®) and the rightmost nonzero entry of 3 — o € Z™
18 negative.

Definition 2.33. The lexicographic ordering on Klxy, ..., x,| is defined as
follows:
For a = (ay,...,ay) and B = (B1,...,Bs), two monomials ** and xP,
T <ep P if and only if:

e the leftmost nonzero entry of B — a € Z" is positive.

Remark 2.34. On K|t] there exists one admissible monomial ordering. It
15 the ordering induced by the degree. We write it >;.

2.5 Grobner basis

Let > be an admissible monomial ordering on K|xy,...,z,]. Let S be
a subset of K[zy,...,x,]. We write (Im,(S5)) the ideal generated by all
the leading monomials of polynomials in S. For more details on Grébner
basis we refer the reader to |8, Chapter2|, in particular for the following
theorem, |8, section 5, theorem 4].

12



Theorem 2.35. (Hilbert Basis Theorem). Every ideal I C Klxq,. .., x,]
has a finite generating set. In other words, there exists some polynomials
g1y, 9s in Klxq, ..., x,] such that I = (g1, ...,9s)-

Definition 2.36. Let I be an ideal of K[xq, ..., x,] and {q1,...,9s} a sub-
set of I. The set {q1,...,gs} C I is a Grébner basis of (I,>) if and only
i

(tm, (1)) = (0, (g1), .., 1m, (g,))-

Example 2.37. The ideal I = (y,xy? +x + 1) in Klx,y] is equal to the
ideal (y,x + 1) because

v+ r4+1l=+D)+ w2y andz+1= (x> +2+1) — (ya)y.

The set {x + 1,y} is a Grobner basis of (I, ;) because I is not equal to
Kz, y].

Definition 2.38. A Grébner basis G of (I,>) in Klzy,...,x,] is minimal
if -
1) There are no polynomials f and g in G such that lm, (f) divides

Im, (g).
Moreover, the minimal Grobner basis G is reduced if :

2) Forall g € G, ey (g) = 1.
3) For all g € G, no monomial of g lies in (Im. (G\{g})).

The following proposition can be found in [5, page 22|.

Proposition 2.39. Let I be an ideal of Klzy,...,x,] . There ezists a
unique minimal reduced Grobner basis of (I,>).

For a ring R and I an ideal of R we define the quotient ring R/I as the
equivalent classes of the following equivalent relation on R: a ~ b if and
only if a — b € I. The following proposition can be found in [8, chapter 5,
section 3, proposition 4].

Proposition 2.40. Let I be an ideal of Klxy,...,z,|. The set of mono-
mials {z*, a € N" | z¢ ¢ (Im,([))} is a basis of the K-vector space
Kz, ..., x,]/1.

Definition 2.41. An ideal I of K[x1,. .., x,] is said to be zero-dimensional
if the K-vector space K[z1, ... ,x,]/I has finite dimension.

2.6 Homogenization

Definition 2.42. Let f be a polynomial in K[z, ..., x,]. We define the
homogenization of f the polynomial f* = hi8U) f(x/h, ... x,/h) in the
polynomial ring K[z, ..., x,, h|. Let g be a polynomial in K[z, ..., x,,h].
We define the dehomogenization of g the polynomial g, = g(z1,...,x,,1)
in Kz, ..., x,].
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Remark 2.43. We can see that for a polynomial f in K[xq,..., x,] we
have (f"), = f but for a polynomial g in K[xy,... 2., h], the equality
(gn)" = g is not necessarily true. For example for th+1 € K[z, h] we have
(zh+ 1)) =2+ h.

Lemma 2.44. Let > be an admissible monomial ordering on K[xq,. .. x
Let I and J be ideals of Klzy,...,x,] such that I C J and (Im, (1))
(lmg (J)), then I = J.

Proof. Suppose that there exists f in J\I. Choose f in J\I with a leading
monomial as lower as possible. Then there exists a polynomial g in I which
has the same leading monomial. Write the polynomial

I
lee(f)  leo(g9)

We see that h is in J but Im,(f) = lm.(h) so h must lie in I by our
minimality hypothesis we deduce that the polynomials g and h are in [
which implies that f is in I which is a contradiction. O]

h

Proposition 2.45. Let =, be an admissible monomial ordering in the ring
Klzq,...,x,] and fi,..., fs be some polynomials of K[xq,...,x,]. Let us
consider the ideals I = (fi,..., fs) and J = (fl,.... M. If {g1,..., 90}
is a Grobner basis of (J,>) where = = (>4, >) on Klxy, ..., x,, h], then
{(g1)ns---,(ge)n} is a Grébner basis of (I,>).

Proof. Let f be in I. One can write it as f = >0 u;f; with u; €
K[z, ...,z,) for i € {1,...,s}. Deduce from the definition that

P (B g (B ).

1=

So there exists (8, aq, ..., a,) € N*T! such that
S

WPt =3 ke
i=1

So it means that A?f" is in J, and there exists k € {1,...,¢} such as
Im, (gx) divides Im, (h®f"). Moreover, by the definition of =, Im, (f) =
Im, (f")/(h®) for some o € N. Deduce that Im, (g;) divides h**?Im, _(f)
which implies that lm. _((gx)n) divides lm, _(f). It means that

Im, (1) C (Imy, ((91)n), - - -, my ((ge)n))

Finally, if gy = >_7_, v;(f;)" for some polynomials v; € K[z1, ..., z,, h] with
ie{l,...,0} then (gx)n = Zle(vi)hf,-. Deduce that

<(gl)hv SR (gl)h> - 1.
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Observe that

Im, (1) = (Imy ((91)n), - - -, Imy ((ge)n))

By Lemma 2.44,
((g)ns -5 (ge)n) = 1.

Then the family of polynomials {(g1)n,...,(ge)n} is a Grobner basis of
1. [

The following property is a known is the literature.

Proposition 2.46. Let >, be the greviex ordering in K(zy, ..., x,] and
fi,..., fs be some polynomials of Klxy,...,x,|. Consider the ideals I =
(fi,oo s fs) and J = (ffr,.... " C Koy, ..., 20, 0], If {91,..., 90} is
a Gribner basis of (J, =griesn) Where >guean s the grevler ordering on
Klz1,...,zn,h], then {(g1)n, .-, (ge)n} is a Grobner basis of (1, > griex)-

Proof. Let fbein I, we can writeitas f = > 7 w; fi withu; € Kz, ..., z,)
for i € {1,...,s}. So there exists (3, ,...,a,) € N*t such that

WOt = Y hulfl
=1

So it means that A”f" is in J, and there exists k € {1,...,¢} such as
Im, ... (gx) divides Im. . (h° ). Moreover, by the definition the grevlex
ordering we can see that lm, . (f) = lm. ., (f"). We deduce by the
same argument as in the proof of Proposition 2.45 that Im, . ((gx)s) di-
vides Im, .. (f). The end of the proof is exactly the same as in Proposi-
tion 2.45. O

2.7 Regular sequences

For more details on regular sequences we refer the reader to |0, page 24,
subsection 3.4].

Definition 2.47. Let F = (f1,...,[fs) € Klxy, ..., z,]° be a sequence of
nonzero homogeneous polynomials. The sequence F' is said to be a reqular
sequence if:

(%) For all 1 € {2,--- s}, fi does not divide zero in the quotient ring
K[Il, e ,ZL’n]/<f17 c ey fi—1>'
For a sequence F' = (f1,..., fs) of polynomials which are not homogeneous

we define for alli € {1,...,s} the polynomial (f;)7 by (f)"(x1,...,2,) =
(fi)"(x1,...,2,,0). The sequence F is said to be reqular if and only if the
sequence ((f1),..., (f)T) is reqular in Klzy, ..., x,)].

Remark 2.48.
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o If a sequence of homogeneous polynomials is reqular then the polyno-
mials are pairwise coprime.
e By [l1, Remark 8,page 20] and |11, definition 19,page 20/, we can see

that for any regular sequence of homogeneous polynomials (f1,..., fs) €
Klzq,...,x,]° such that I = (f1,..., fs) is zero-dimensional we have
s=n.

Example 2.49.
o This is an example of a sequence of homogeneous polynomials that
are pairwise coprime but the sequence is not reqular:

fl :l',fg :y7f3 =r—ye C[Q?,y,Z].
The sequence (f1, fo, f3) is not reqular because

f3 =0¢ (C[:L'7ya Z]/<f17f2>

o This 1s an example of a sequence of polynomials that satisfies the
property (%) but without being homogeneous and there homogenization
does not respect (x) anymore:

flZx—l,fQ:$y2_27f3:$2—26(c[$7%2]-

The sequence (f1, fo, f3) satisfies the property (x) but it is not the case
Jor ((F)™, (f2)", (f3)") because :

(% = 2h)(hy* = 2h*y) € ((f1)", (f2)")
and (hy* — 2h%y) & ((f1)", (f2)").

2.8 Hilbert series

For more details on Hilbert series we refer the reader to |G| chapter 2 section
2. For n € N the set K[zy,...,2,]q = {f € Klzy,...,z,] | deg(f) =

d and f is homogeneous} is a K-vector space of dimension ("*gil). It
is an ideal of K|xy, ..., x,], then the set I; = I N Klzy,...,x,]q is also a

K-vector space.

Definition 2.50. Let fi,. .., fs be homogeneous polynomials of K[z, ..., x,]
and I = (f1,..., fs). The Hilbert function in degree d € N of the ideal I is
defined by:

HF(d) = dim(K[zy, ..., x,]q) — dim(1y).

Definition 2.51. Let fi,. .., fs be homogeneous polynomials of K[z1, . .., x,]
and I = (f1,..., fs). The Hilbert series of an ideal I of K[xq,..., x,] is
defined as follows:

HS;(t) = f HF(d)t?
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The following theorem can be found in [I, page 2, theorem 2.

Theorem 2.52. Let fi,. .., fs be homogeneous polynomials in K[xq, . .. z,]
with deg(f;) = d; and I = (f1,..., fs). The sequence (f1,..., [fs) is reqular
if and only if its Hilbert series is given by

HS,(t) = —Hf(ll(_l t_)nt )

3 Lazard’s algorithm

The original paper of this algorithm is [15]. For a set S of polynomials,
the set Spang(S) is the K-vector space generated by S. In K[zy,...,z,],
the set Mon, is the set of monomials of degree d and Mon<, is the set of
monomials of degree at most d. The set Mon is the set of all monomials
of K[xy,...,2,]. The support of a polynomial f in K[zy,...,x,] is a finite
subset J of N" such that f =} ,_; a;jx? were a; is in K\{0}. For a set 3,
the set P(S) is the set of all subset of S.

3.1 The homogeneous case

Let us explain Lazard’s algorithm in the homogeneous case and prove that
it computes a Grobner basis.

Proposition 3.1. Let I be an ideal of K[zy,...,x,] generated by the ho-
mogeneous polynomials f1, ..., fs in K[zq, ..., x,] with deg(f;) = d;. Let d
be in N, we consider the K-vector space Iy = I (\Klxy,...,z,]a of homoge-
neous polynomials of degree d in I. Then I is equal to the K-vector space
Spang ({ fim | m € Mong_g4, and i € {1,...,s}}).

Proof. Show that I; = Spang ({fym | m € Mon,_4, and i € {1,...,s}}) :
(D) It is obvious that this vector space is in I; because the polynomials

fim lies in K[zy,...,2,]s and in I. Moreover, a K-linear combination of
those polynomials stay in I, .

(C) Conversely, let f be in I;. Then f can be written as f = > "7 u; f;
with w; in K[zy,...,2,] for all ¢ in {1,...,s}. Let ¢ be in {1,...,s}, we
define J; C N as the support of the polynomial f; and K; C N" as the
support of the polynomial u;. We express those polynomials as

U; = E bz"kil?k and fz = E CLZ'J'CBJ

keK; JEJ;
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with a; ; and b;x in K for all 3 in J; and k in K;. Then we have

fivi = E Clz‘,jbi,kak

jeJikeK;

which leads to

oYY e
i=1 jeJ;,keK;
Let i be in {1,...,s}, observe that for all j € J;, |j| = d;. We define the
sets K;1 ={k€ K, | |k|=d—d;} and K,5 ={k € K; | |k| #d—d;}. We
can see that K; = K;; U K, 5. We can write:

s s
_ i+k j+k
f = E E ai,jbi,kazj -+ E E CL@jb,"k,iBJ .

=1 jeJi,keKi’Q =1 jEJi,kEKi’l

The first term of the sum has no monomial of degree d while the other term
is homogeneous of degree d. As f is homogeneous of degree d then the first
term is zero. We define new polynomials u; = Zkem,l bi,ka:k which are
homogeneous of degree d — d; and f =Y., 4;f;. Then f is in the vector
space generated by the polynomials f;m where m is in Mong_g,. O

The following definition can be found in [14, chapter 2, definition 2.61].

Definition 3.2. Macaulay matrix

Let F = (f1,..., fs) be a sequence of polynomials in the ring Klz1, ..., x,]
with deg(f;) = d; and = be an admissible monomial ordering. Let d be in
N. Let ¢ : N x K[zy,...,2,]N — P(Mon) x P(Mon)Y be a function such
that ¢(d, F') = (A, B) where B = (B;)ien. We define the Macaulay matriz
for d € N as follows.

Each column is indezed by an element of A by decreasing order for .
Fach row is indexed by an element of the set {fm | i € {1,...,s}, m € B;}.
For i in {1,...,s}, we write the set B; = {m;1,...,mix,}. The rows are
arranged in decreasing order for the order .., defined as follows

fimLk > row f,-/m,%/ si<i oor (Z =i and My g > m¢/7k/)
foralli and i in{1,... s} and for allk in{1,... k;} and k" in {1,... ky}.
Let i be in {1,...,s}, j bein {1,...,0} and k be in {1,... k;}, the entry
c in the row fym; ) and in the column m; in the matriz is the coefficient of
m; in the polynomial fimy .
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f1 C Mk

fi- mina
fi * My g,

Ma0¢(d,F)7> = f’L . mi,k ..............

fi mi1
fs : ms,ks

fs RUZS]

The idea in Lazard’s algorithm is to find elements of [; that have for
leading monomials the leading monomials of ;. The following proposition
claims that those can be found in the row echelon form of the Macaulay
matrix of degree d.

Notation 3.3. Let fi,..., fs be polynomials of the ring Klxy, ..., z,| with
deg(fi) = d;. Define ¢o(d, F') = (Mong Mong_g,, ..., Mong_,).

Remark 3.4. Let M be a matriz in K™%, in Section 2.1 we saw that there
exists a invertible matriz A in K™ such that M, = AM s the reduced
echelon form of M. Let F' = (f1,...,fs) be a sequence of homogeneous
polynomials and > be an admissible monomial ordering. Suppose that M =
Macy g r) - Then the columns of My are also indexed by monomials of
Mong. The rows of such matrices can be seen as homogeneous polynomials
of degree d in K|xy, ..., x,].

Proposition 3.5. Let F' = (f1,..., fs) be a sequence of homogeneous poly-
nomials in K|xy,...,z,] and = be an admissible monomial ordering. Let
M be the row echelon form of Macy, 4 r - The set Im, (1) is equal to the
set of monomials that index a column that contains a pivot in M.

Proof. By Proposition 3.1, the rows of Mac, 4 r) - generate the K-vector
space I;. As there exists a square invertible matrix A such that

M - AM&C¢>0(d,F),>- .

The rows of the matrix M generate the same K-vector space I;. By Def-
inition 3.2, it is obvious that a monomial which indexes a column that
contains a pivot in M is an element of Im, (I;). Moreover, let f be in I,
then )

Macgy(a (.~ = AM
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for a certain row vector A with entries in K. By Proposition 2.4, Mac, 4 ().~
has the same pivot as a row of M. That means Im, (f) is a monomial that
index a column that contains a pivot in M. O

Proposition 3.6. Let fi,..., fs be homogeneous polynomials in the ring
Klzy, ..., 2, with d = mineq,. 5y (deg(f;)) which generate an ideal I =
(fi,.... fs). Then the equality minsc; deg(f) = d holds.

Proof. Write
= Zuifia

observe that the degree of all monomials of f is greater than d.

m
Definition 3.7. Let F = {fi,..., fs} be a set of homogeneous polynomials
of an ideal I of K[zy,...,x,] and let = be an admissible monomial order

on Klxy,...,z,]. The set F is said to be a d-Grobner basis of (I,>) if for
any [ in I with deg(f) < d we have

Im, (f) € (Im-(f1), ..., Im,(f)).
The following Proposition can be found in |1, Chapter 2, Proposition 2.60]

Proposition 3.8. Let I be an ideal of K|xy, ..., xz,] and = be an admissible
monomial ordering on K|xy, ..., z,|. There exists some dy such that for all
d > dy in N, if {p1,...,pe} is a d-Grébner basis of (I,>) then it is a
Grobner basis of (I, ).

Proof. Write {gi,...,gs} the minimal reduced Grébner basis of (I, ).
Write dy = max(deg(g1),...,deg(gs)), let d > dy and {py,...,p} be a
d-Grébner basis of (I,>) and [ = (p1y.-.ype). As deg(g;) < d then as
{p1,...,pe} is a d-Grébner basis of (I, >), Im, (g;) € (Imy(p1), ..., lmy(pe)),
so (Im, (1)) = (Imy ({p1,...,pe})) as {g1,...,9s} is a Grébner basis of I.

Moreover I C I which leads to (Im, (1)) = (Im.(I)), by Lemma 2.44 we
deduce that I = I which means {p1, ..., p,} is a Grébner basis of (1,>). [

Remark 3.9. Macaulay bound [15, page 15/, Theorem 3]

Let F = (f1,..., fs) be a reqular sequence of polynomials of degree d, . .., d;
that generate the ideal I. There exists a formula for such a dy that works
for the grevlex ordering:

D= (Zs:(di — 1)) + 1.

It implies that all polynomial from the reduced minimal Grébner basis of
(I, > gries) have degree D or less. The K[t|-vector space

V = <mfl | 1€ {1, .. .,s},m € MOHSD—@)K

contains a Grébner basis of (I, > gricx)-
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Theorem 3.10. Macaulay bound [15, page 154, Theorem 3]

Let F = (f1,...,fs) be a reqular sequence of homogeneous polynomials of
degree dy, ... ,ds that generate the ideal I. Let = be a graded ordering on
Klzq,...,x,]. Suppose I is zero-dimensional, then for all element g of the

minimal Grobner basis of (I,>) the inequality:

(Z(di - 1)) +1 > deg(g)

i=1
holds.
Proof. As (f1,..., fs) is a regular sequence and I is zero-dimensional, then

s =n by Remark 2.48. As fi,..., fs are homogeneous and (fi,..., fs) is a
regular sequence, then

msi(o) - LU=

by Theorem 2.52. Observe that H.S/(t) is a polynomial in ¢:

n _4d;
HS (1) = —Hial(_lt)nt )
[T (1) 55
(1=t

d;—1

-1

i=1 j=0

Observe that the degree of HS;(t) is (D.;_,(d; —1)). Let us define the
integer D = (>_7_,(d; — 1)) + 1. By Definition 2.51, for all d > D the
equality HF;(d) = 0 holds, which means

INK[zy,...,zn)a = Klzy, ..., 204

Let g be an element of the minimal Grébner basis of (I, ) and let suppose
that deg(g) > D. As > is a graded ordering, then deg(lm, (g)) = deg(g).
Write £% = Im, (g), then there exists a monomial x” such that:

o P £ x°

o P divides ¢

o deg(zf®) > D.
As deg(x®) > D, the monomial = is in I because

In K[ZL‘17 ce axn]deg(wﬁ) = K[Ilv e axn]deg(mﬁ)'
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As the monomial ? is in I, there exists f an element of the minimal
Grobner basis of (1, >) such that

Im, (f) divides

which implies that
Im (f) divides lm, (g).

This is a contradiction with the fact that g is an element of the minimal
Grobuer basis of (I, >). By this contradiction, deduce that deg(g) < D.
O

Example 3.11. If we take [ = (x,xh* —y3 yh? — 23) for the lexicographic
ordering in K[z, y, z, h|, the Macaulay bound is 5 but the minimal reduced
Grobner basis of (I, =) is {x,y>, y?2>,y2° yh?* — 23, 2%}, This shows that
the Macaulay bound does not apply for the lexicographic ordering.

Algorithm 1 Homogeneous Lazard’s Algorithm

Input: homogeneous polynomials F' = (fi,..., fs) of Klzy,...,z,] with
deg(f;) = d; an admissible monomial ordering > and an integer d,, .
Output: a dpa.-Grobner basis of ((f1... fs), >).
1: G = {}

3: for d = d,in, 10 dper dO
4: M - MvabO(d’F)’}

5: my = column vector that contains all the monomials of degree d in
decreasing order for >,

6: M = reduced row echelon form of M

7 I=M-my

8: G=GU{h €I ]|Vg e GUIg # h/lm.(g) does not divide

Im, (h)}
9: return GG

Proposition 3.12. The output of Algorithm 1 is a dpq.-Grébner basis of
(<f1> B f87 >7 >_)'

Proof. Write G the set of polynomials that the algorithm returns and we
write G the set of polynomials which are the nonzero rows of the reduced
row echelon forms of all Macaulay matrices from d,,;, to d,q.. We notice
by Step 8 in the algorithm that G is a d,,q.-Grébner basis of I if and only
if G is also one, in fact ({lIm.(g),g € G}) = ({lm.(g),g9 € G}). Let us
show that G is a Amaz-Grobner basis.
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Let f be a polynomial I such that deg(f) < d4. then by Proposi-
tion 3.6

dmaw

f=Y" pa

d:dmin

such that the polynomial p; € K|z, ..., 2,4 (the homogeneous part in de-
gree d of f). There exists j such that Im, (p;) =1m, (f). As f=> ., uif;,
we notice that p; = Zle u; f; with the u; that are homogeneous with de-
gree j —d;. As p; is in Spang({fim | m € Mony_4, and i € {1,...,s}}),
by Proposition 3.1 the polynomial p; is in Iy = I\ Kzy,...,z,]q. As
p; is in Iy, by Proposition 3.5 lm, (f) = lm,(p;) is in the ideal gener-
ated by the leading terms of G which means G is a dmaz-Grobner-basis of

(<fl~--.fs>a>_)‘ O

3.2 The affine case

In Section 3.1 we saw that if fi,..., fs; are homogeneous we can find a
Grobner basis with Lazard’s algorithm but this is still possible when those
polynomials are not homogeneous. By Section 2.6 we can proceed by ho-
mogenizing input polynomials fi, ..., f; hence obtaining fI, ..., f*. After
that we apply the algorithm on f',..., f* and we obtain a set of polyno-
mials as output. By evaluating this set in 1 on the variable h of homoge-
nization ( g — g5 ) it gives us a Grobner basis by Proposition 2.46. The
following algorithm does not use homogenization.

Notation 3.13. Let fi,...,fs be polynomials of the ring Klxq,. .., x,]
with deg(f;) = d;. Define ¢1(d, F) = (Mon<y Mong_g,,...,Mong_g4,) and
¢2(d, F) = (MOHSd, Mongd,dl, ceey Mongd,ds).
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Algorithm 2 Affine Lazard’s Algorithm
Input: F = (f1,...,fs) polynomials of K[z1,...,xz,] with deg(f;) = d;.
Output: Grébner basis of ((f1... fs), > griex)-

12 dpin = mlnle{l ..... sy(d;)

2: D Zz 1( )+ 1

3: G= {}

4: M = Ma‘c¢2(dmin,F)7>g7'le;c

5: mg . = vector column that contain all the monomials of degree d,,;,

or less in decreasing order.
M = row echelon form of M

6:

7. I=Mx M, in
8 G=1

9:

ford=d,,;, +1to D do

10: M = Macy, 4 r)
M

11: M = ( 0 N

12: mg = vector column that contain all the monomials of degree d or

less in decreasing order.

13: M = row echelon form of M

14 I=Mxmy

15: G=GU{h el |Vge GUIg# hlm,_, (g9) does not divide

..., (h)}

16: return G

7>'g7‘lez

Proposition 3.14. Suppose that ' = ((f1)",...,(f)") is a reqular se-
quence and that the ideal ) f1, ..., fs( is zero-dimensional . The oulput of
Algorithm 2 is a Grobner basis of the pair ((fi... fs), > gricz)-

Proof. Let a regular sequence F' = (f1,...,fs) be in K[zy,...,x,] with
deg(f;) = d; and the ideal I = (fy,..., fs). Let > cqn the grevlex ordering
on K[z, ..., 2., k). Write F' = (f,..., f?) and dynin, = minieqr s (deg( ;).
As f is regular, by Proposition 2.46 and Remark 3.9, we know that if g is an
element of the minimal reduced Grébner basis of I for >, there exists p
in the ring K[y, ..., 7,, h] such that p, = g with Im,_,_(g9) =1Im, . (9)
and there exists d € {dnin, ..., D}, with D is the Macaulay bound, such

that p is in the vector space generated by the rows of Mac%(d’ﬁ)’}g”ezh. So

we can then write p = > 7 | fu; with deg(u;) = d — d;. Then by taking
h =1 we have g = >, fi(u;)p with deg((w;)p) < d — d;, that means §
is generated by the rows of Mac@(d,F)kmm. Then Algorithm 2 gives us
a Grobner basis of (1, >,.,) as for all ¢ in the minimal Grébner basis of
(I, = grie) the output contains g such Im, (g9) =1Im, . (7). O
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3.3 Complexity

We assume that we are computing a Grobner basis for the grevlex ordering.
Let F' = (fi1,..., fs) be a regular sequence of polynomials in K[z,...,x,]
so that means we can use the Macaulay bound. Suppose that F'is regular
and that (fi,..., fs) is zero-dimensional. That implies that s = n by |
page20,definition 19].

)

Suppose that for all 4 in {1,...,n}, deg(f;) = d in N. Now write the
Macaulay bound:

Dzl—n—l—Zd:l—i-n(d—l).
i=1
Let us find some information about the size of the last matrix M =
Macpc ., F:

drl
- The number of columns is:

Col(n, d) = <D ; ")

- The number of rows is:
D—d+n
R d) = :
ow(n, d) n( D_d )
- The rank is lower than the minimum of the two numbers above.
In order to know min(Col(n,d), Row(n,d)) and to efficiently bounded the
rank, write:

R(n,d):M: Hi

Proposition 3.15. Forn >4 and d > 2, R(n,d) > 1.

Proof. Let d > 2, we will show that (n — R(n,d)) is increasing on
[4,4+00[. We can show it for:

In(R(n,d)) = In(n) + i(ln(n(d —1)4+1—14) —In(nd+1—1)).

The derivative in n is:
d—1

1 d—1 d
ﬁ+;n(d—1)+1—z_nd+1—z'

d—1

1 (d=1)(nd+1—10)—d(n(d—1) + 1 — )
= T2 d=1) +1—)(nd+1—19)

n

[ i—1
:E+;<n(d—1)+1—¢)(nd+1—z’)'

25



It is easy to see that the only term that is negative is when ¢ = 0 but it

is less in ultimate value than L. Then (n — R(n,d)) is increasing on

[4, +00.

We know that R(4,2) = 10 > 1, R(4,3) = 168 > 1 R(4,4) = 143 > 1_if

143 119
we prove that (d — R(4,d)) is increasing on [4, +00[ we can deduce that

R(4,d) > 1 for all d > 2. First we ensure that this function is well defined:

d—1 d—1 .
4d—-1)+1— 4d+1 — 4
I

4d+1—i L ad+1—i

d-1 d+3 3d + 1
=4 dd+1—1| =4
(llléld%—l—z) (H d+ 2) H4d—i—1—z

As above we look at the derivative in d of In(R(4, d)):

@

3

> -3
= 3d+1—i 4d+1—z ~ (3d+1—i)(4d+1—1i)

We can see that in ultimate value the term ¢ = 2 is greater than the term
1 = 0 so this quantity is positive. This concludes the proof. O

Proposition 3.16. Forn=2 orn=3 and d > 2, R(n,d) < 1

Proof. If n = 2 it is easy to see that (d — R(2,d)) is a decreasing function
on [2, +oo[ with the same method as above. Moreover, R(2,2) = 2 < 1.

Let us take n = 3, (d — R(3,d)) is increasing on [3, 400 but it seems
that R(3,d) < 1 for all d > 2.

d—1 . 2 .
d—1 1-— 2d+ 1 —
R(B,d):BHS( )+ 2:3H¥_

p 3d+1—1 o 3d A1 =i
See that R(3,2) = &, R(3,3) = £ and lim (R(3,d)) = §, which con-
d—+o00
cludes the proof. O

Pr0p051t10n 3.17. Let us take F' = (f1,..., fn) with deg(f;) = d; and
= (fi,..., fn) with deg(f;) = d and nd = 3", d;. The new function is

Sy (")
(D+n) .
D

Then forn >4 and d > 2, R(n,d) > 1 in that case.

R(n,d) =
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Proof. The Macaulay bounds of I’ and F are equal:

D:(§i¢>—n+1:nd—n+1:(i}g—n+lzﬁ.

i=1 =1
We want to compare the numbers of lines in those two cases:
“~ (n+ D —d;
Row = ; ( D_d )

and

— n+D—d
Row-n( D_d )

First, D — d is the mean of the D — d;:
1 n
- (D-d)=D-d.
[

Let x be in N, then:
n—1
r+n 1 .
( . ):EH(aH—n—z).
T i=0

Observe that the function f : R™ — R defined as:

f@) = = [T +n -0

is convex as it is a polynomial with positive coefficients.
Deduce that the inequality:

n

LS D d) 2 (DD - d)

=0

which is equivalent to Row > Row holds. As the number of column is the
same, that concludes the proof. ]

The following result can be found in |18, chapter 2|. The exponent w is the
constant of matrices multiplication.

Theorem 3.18. Let M be a matriz of K"*¢, then it takes
O(rank(M)“?rc)
operations in K to obtain its reduced row echelon form.
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Let us find the rank of M more precisely. By Proposition 3.5 and the
definition of the Hilbert function, the following result holds.

Proposition 3.19. Let F' = (f1,..., fs) be a set of homogeneous polyno-
mials of K|xy, ..., 2z, of degree dy and I = (f1,..., fs). Let d be in N. The
following equality holds:

—1+d
rank(MaCdkng F) = (n +

; )—HE@.

Let FF = (f1,...,fs) be a set of polynomials of K[zy,...,z,] of de-
gree dy and I = (fy,...,fs). By applying the homogenization it gives
Fh = (ff,..., f1). In order to search the number of operations to com-
pute a Grébuer basis of (I, > ge), we compute for the homogenized set of
polynomials. It gives us

didoo <((d;n) _HFI(d)>w_2 (d;n)n@;iodtn))

where D =1+ n(dy — 1).

4 Polynomial matrix version of Lazard’s algo-
rithm

4.1 The Hermite normal form

This section generalizes Lzard’s algorithm by working on K[t][z1, ..., z,] =
K[z1,...,2n,t]. As those two rings are isomorphic, the notion of ideal is
exactly the same. Let t°x2® be a monomial, the  part of this monomial
is x*. Let f be a polynomial of K[t|[z1,...,x,], it can be written f =
> yen a4xY with M a finite subset of N" and a, in K[t] for all v in M.
The set Mong, is the set of monomials in the x4, ..., z, variables of degree
d, Mony is the set of monomials in the xzy,...,x,,t variables of degree d
as above. Let >, be an admissible monomial ordering on Klzy,...,x,].
Let f be a polynomial of K[t][z,...,x,], write deg,(f) its degree in the
x1,...,x, variables. The polynomial f is z-homogeneous if all monomials
of f have the same degree in the xy,...,x, variables. The degree of a
coefficient a~ it will be written deg,(a). For >, an admissible monomial
ordering on K|z, ..., z,], write Im,_ ,(f) for leading monomial, It. .(f)
for the leading term and lc._ ,(f) for leading coefficient. For a subset S of
K[t][@1,...,,], the set (S)kp is the K[t]-module generated by S.

Example 4.1. Let f = 2xx9t* — 23t + 423 be a polynomial in Q[t][z1, x2).
Let = gy1e0 be the grevlex ordering on Q[z1, x2] and > greqt the greviex order-
ing on Q[x1,xs,t]. Then:
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o deg(f) =4

o deg,(f) =2

o lm, . (f)=z12ot”

o Ity ,...(f) = 2x2,t?

i 1C>'g'rle:vt (f) =2

° 1m>gﬂm,x(f) = x%

o lte,o(f) = (—t+4)a7

d 1C>grlex71‘(f) =—t+4

o deg,(lor,.,.0(f)) = 1.
For the following proposition, the sets K[t][x1, ..., z,|q and K[z1, ..., x,, t]4
are not equal. In fact, K[t][xy,...,z,]q is the set of xz-homogeneous poly-

nomials f in K[t][xy,...,z,] such that deg,(f) = d.

Proposition 4.2. Let f1,..., fs be x-homogeneous polynomials of the ring
K[t][x1,- - ,z,]) with deg,(f;) = d; and the ideal I = (fy,...,fs). Con-
sider the K]|[t]-module I, = I\K[t][x1,...,2xn]a. This is the set of x-
homogeneous polynomials of degree d in I. Then I, is equal to the Klt]-
module ({ fimi|m; € Mong_q, , and i€ {1,...,s}})kpy-

Proof. Tt is exactly the same proof that for Proposition 3.1 in Section 3.1
but with coefficients which are polynomials in K[¢]. O

Notation 4.3. Let fi,..., fs be polynomials of the ring K[t][x1,. .., x,]
wzth degx(fl) = dl Deﬁne §Z§3(d, F) = (1\/[01’1617387 MOHd,dhx, e ,MOHd,ds’m).

Example 4.4. Let F = (x1t + 224, 373t% — 4x129) = (f1, f2) in Q[t][x1, z2)
and > griep be the grevlex ordering on Qlxy, xs, then

3 vy mai

2ofift 2 0 0

19 - f1 0 t 2 0

Mac¢3(37F)’>g”m = 22-f1] 0 0 t 2
Iy - f2 0 —4 3t2 0

Ta-fo\0O 0 —4  3t?

Proposition 4.5. Let [ be a x-homogeneous polynomial in the ring K[t|[xq, . . .

with deg,(f) = d and >, an admissible monomial ordering on the ring
Klz1,...,2,]. Consider Macy, 4 sy .- This is a row vector with entries in
K[t]. It is then in weak-Hermite from, write c its pivot and m the mono-
mial in x that indexes the column of the entry c. Then lm. _,(f) =m and

les, o(f) = c.

Proof. By Definition 3.2, the monomials that index the columns are ordered
with >, then we are done.
O
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Proposition 4.6. Let F' = (f1,..., fs) a family of x-homogeneous polyno-
mials of K[t]|[z1, ..., x,] with deg,(f;) = d; and I = (f1,..., fn). Let us
consider Iy for a degree d in N and >, an admissible monomial ordering on
Klz1,...,z,]. Let f be a polynomial in Iz and M = Macy, 4y, Then
there exists a row of the Hermite form of M which represents a polyno-
mial g in Iy such that lm, ,(g) is equal to lmy . (f) and deg,(lc., .(g)) <

deg, (le-, 2(f))-

Proof. By Proposition-Definition 2.7, there exists a square unimodular ma-
trix A such that M = AM is the Hermite form of M. As A is unimodular,
by Proposition 2.11, the rows of M generate the same K[t]-module as the
rows of M. By ?7, the rows of M generate I;. Then the rows of M generate
I;. Observe that there exists a row vector B which has its entries in K[t]
such that: -

Macy,a()),». = BM.

As M is in Hermite form, by Proposition 2.12 there exists a row of M
such that the column index of its pivot is the same as the one of the
pivot of Macyy 4., {f}. As this row can be seen as a polynomial g in
I, Proposition 4.5 implies that Im,  ,(g) is equal to lm, _ ,(f). Moreover,
the inequality on the degree in Proposition 2.12 implies that the inequality

deg,(lc.-, »(g9)) < deg,(lc., .(f)) holds. O

Definition 4.7. Let f1,..., fs be x-homogeneous polynomials of the ring
K[t][x1, -, z,] with deg,(fi) = d; and the ideal I = (fi,..., fs). The
set F'= (f1,...,fs) is a K[t]-Grébner basis of (I,>=;) if I = (f1,..., [s)
and for all f € I there exists i in {1,...,s} such that lm, . (f;) divides

Im,, .(f) and deg,(lc., .(fi)) < deg,(le., »(f))-

Lemma 4.8. Let f be a polynomial of K[t][xy1, - ,x,] and =, be an ad-
missible monomial ordering on K[z, -+ ,x,]. Then

Lo (/)50 o, ()

where (=, =deg,) = -

Proof. Write

f= Z ax”
~eM

with S a finite subset of N” and a., in K[¢t] for all v in S. Let ~, be in M such
that Im, . (f) = . It is clear that & is the = part of Im, (f) because
else, it would not be equal to Im, _ ,(f). It means lc, _ ,(f)) = a-,. Consider
a,x™, compare t'x for i in {0, ..., deg,(a,)}. Obviously tde&(@0)g0 is
the greater monomial in f for >.

O]
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Proposition 4.9. Let fi,..., fs be x-homogeneous polynomials of the ring
K[t][x1, - ,z,) with deg,(f;) = d; and the ideal I = (f1,...,fs). Let
=, be an admissible monomial ordering on Klzy, - ,x,]. The set ' =
(f1,--., fs) is a K[t]-Gribner basis of (I, ;) if and only if F' is a Grobner
basis of (I,>) with (>4, >deg,) = >-

Proof.

(=) Let F be a K[t]-Grobner basis of (I, >-,). Let pbein I. Then there ex-
ists f in F such that lm, . (f) divides Im,  ,(p) and deg,(lc., .(p)) >
deg,(lc.-, »(f))- By Lemma 4.8,

Im, (f) = hnm’x(f)tdegt(ch,x(f)) and Im, (p) = 1m>m’m(f)tdegz(lcm,z(p))‘

Observe that lm, (f) divides Im, (p).

(<) Let F be a Grobner basis of (I,>). Let p be in I. Then there exists
f in F such that lm, (f) divides lm, (p). By Lemma 4.8 as above,

Im, . (f) divides lm,  ,(p) and deg,(lc., »(p)) > deg,(lcs, .(f))-
Il

Definition 4.10. Let I be an ideal of K[t][x1, -+ ,x,]. Let f1,..., fs be x-
homogeneous polynomials in I. Let =, be an admissible monomial ordering
on Klzy,--+ ,x,]. The set F = (f1,...,[s) is a (d,K[t])-Grobner basis of
(I,>2) if for all f € I with deg,(f) < d, there exists i in {1,...,s} such
that lm,, .(f;) divides Im, .(f) and deg,(lc.-, . (f;)) < deg,(lc., 2(f))-

Proposition 4.11. Let I be an ideal of K[t][x1,...,x,] and >, an admis-

sible monomial ordering on Klxy,...,x,|. There exists an integer dy such
that for all d > dy, if a set F is a (d,K[t])-Grobner basis of (I,>,) then I’
is a K[t]-Gribner basis of (I,>.).

Proof. Let (g1,...,9¢) be a minimal Grébner basis of (I,>) with > =
(>2, =deg(t)), Write dy = max(deg,(g1),...,deg,(gs)). Consider d > dy
and F' = (f1,...,fs) a (d,K[t])-Grobner basis of (I,>,). Let us show
that F' is a K[t]-Grobner basis of (I,>,). By Proposition 4.9, we need
to show that F' is a Grobner basis of (I,>). Let i be in {1,...,¢}, by
hypothesis, there exists f; in F' such that lm, . (f;) divides Im,  ,(g;) and
deg,(lc., »(f;)) < deg,(lc, »(9:)). By Lemma 4.8, this implies that Im, (f;)
divides Im, (g;). As

(Imy (g1),...,1lm.(g¢)) = 1m, (1)

then
(Imy (f1),...,lm (f5)) = Im,(I).
By Lemma 2.44,
(fi,- -y fs)=Ag1,---,90) =1

which concludes the proof. O
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The following algorithm is a version of Lazard’s algorithm that uses the
Hermite form.

Algorithm 3 Hermite PM Lazard’s Algorithm

Input: homogeneous in x polynomials F' = (fi,..., fs) of K[zy,...,x,,1]
with deg,(f;) = d;, an integer dyax, an admissible monomial ordering
.

Output: A (dmax, K[t])-Grobner basis of ((f1,..., fs), >z)
:G=1{}
dmin = M {1, s} (dega:(fz))
: for d = din 10 dpax doO
M = Macy,qp),-,
mgq = vector column that contain all the monomials in x of degree
d in_decreasing order for >,.
M = the Hermite form of M
: I=M- mq
8: G = GU{h € IIVg € GUI,g # h,m., ,(g) does not di-
vide lm, , ,(h) or lm,_ ,(g) divides lm,_.(h) and deg,(lc., .(h)) <
deg,(le-, +(9))}

9: return GG

QU Wy

Y
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Lemma 4.12. Let fi,...,fs be x-homogeneous polynomials of the ring
K[t][z1, ...,z and =, be an admissible monomial ordering on the ring
Klzq,...,x,). Let dyax be an integer. Let G be the output of Algorithm 3.
Let G the output of Algorithm 3 but step 8 of the algorithm is replaced by:

G=GUI.

The set G is a (dmaz, K[t])-Grobner basis of (I,>,) if and only if G isa
(dmaz, K[t])-Grobner basis of (I,>,).

Proof.

(=) Suppose G is a (dmaq, K[t])-Grobner basis of (I,>=,). As G C G, then
G is a (dpag, K[t])-Grobner basis of (I, >,).

(<) Suppose that G is a (dyag, K[t])-Grobner basis of (I,>-,). Let f be
in I with deg,(f) < dmas, there exists g in G such that Im.__,(g)
divides Im,  ,(f) and deg,(lc., .(9)) < deg,(lc., »(f)). If g € G then
it concludes for this chosen f but if ¢ is not in G then that there exists
a ¢ € G such that Im,  ,(¢') divides Im, _ ,(g) and deg,(lc., .(¢')) <
deg,(lc., »(g)). Finally, that implies that Im, _,(¢) divides Im,_ ,(f)
and deg,(lc., .(¢")) < deg,(lc., .(f)) which concludes the proof.

]
Proposition 4.13. Let f1,..., fs be x-homogeneous polynomials of the ring
K[t][z1, ..., zy] and =, be an admissible monomial ordering on K[z, ..., ;).

Let dyar be an integer. Algorithm 3 returns a (dpyaz, K[t])-Grobner basis of
(<f17 ey f8>7 >'z)

Proof. With the same notation as in Lemma 4.12, we need to prove that
G is a (dmaz, K[t])-Grobner basis of (I, >,).
Let f be in I with deg,(f) < dynar and dyi = min(deg, (f;)). Write

dmaa:

fzzuifi and [ = Pd
i=1

d=dmin

with deg,(ps) = d and w; in K[t][xy,...,2,,t]. As the f; are homoge-
neous we can see that for all d, pg is in I;. There exists a dy such that
lm>z7x(f) = 1m>z,x(pd0) and gegt(lc>z7x (pdo)) = degt(lc>z7x(f))' By PI"OpO—
sition 4.6, there exists ¢ in G such that lm,  ,(g) divides lm, _ ,(p4,) and
deg,(Ics-, »(9)) < deg,(lcs, (pa,))- By the equalities above, that implies
that I, __,(g) divides Im, _,(f) and deg,(Ic. . ,(g)) < deg,(lc, , .(f)) which

means that G is a (d, K[t])-Grobner basis of ((f1,..., fs), =z)- O

This algorithm computes a Grobner basis for this order (>, >qcg,). The
problem is that this new algorithm can not return us a grevlex Grébner
basis (for example 2 =g, 7).
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4.2 The Popov form for grevlex ordering

This subsection proposes an algorithm which computes a Grébner basis
for the Ordering >’gv"lext on K[Z’l, s 75Cn7t] with I >'grle:1:t Ty >'grle:1:t
Ty > griext t. The following definition is about affine K[¢t] Macaulay matrices.
The changes are that the monomials that index the columns are in degree
at most d and the rows represent polynomials of degree at most d (not

deg,).
Notation 4.14. Let fi,..., fs be polynomials of the ring K[t|[xy, ..., x,]

with deg(fz) = dz Deﬁne ¢4(d, F) = (MOl’lSd’x, MOHSd,th, c ,MOHSd,dSw)
and ¢5<d, F) = (1\/[0Il§d7gv7 Mond,dhx, e ,MOl’ld,dS,m).

Lemma 4.15. Let p be a nonzero polynomial in the ring K[z, ..., x,,1]
with deg(p) = d. Let >ger be the grevlex ordering on Klzy, ..., x,] and
> grieat Ue the grevlex ordering on Klxy, ..., x,,t]. Write p as a vector:

P = Macy, 4,p))

7>grlez :

Let Mon<g_g4, » be equal to {x>, ..., x*} with for alli and j in {1,...,(},
t < 7 if and only if X = 4piep €. Consider the shift s defined as follows
and LM(P) the leading matriz of P for the shift s.

™ o %o o1
s — | deg(x>) ... |deg(x0)|... 0

Pl @@ | @) |... «a)
LM, (P) — 0 e @iy ey

The entry a;, is the pivot of LMg(P) forig in {1,... L}, so g, is the s-pivot
of P. The equality
lm>grzm (p) = %o $9e8: (%)

holds.

Proof. As > gieqt is an admissible monomial ordering, then for two mono-
mials m, and meg, if my divides mgy then mgy > grieqe m1. This means that
we need to compare the x%¢9°¢:(®) with i € {1,... (¢} to find the leading
monomial of p. Write Im,_ . (p) = ™ot (@), Observe that

deg(x*nt%:l%0)) = deg(lm,, .,(p))

= max (deg(x®itde(e))),
E&%(ﬁ )
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On the other hand, observe that

rdeg,(P) = max (deg(x™) + deg,(q:))

1€{1,...,¢0}
Z-Jﬁ,..’fe}( g( )

By Definition 2.18, for all j in {1,...,¢} :

deg(x®itdoen)) = r{rllax }(deg(m""'tdegt(%))) < a; # 0.
1e1,..., c

We have shown that aj, # 0 but now we must show that iy = jo. Observe
that if we show that for all 7 in {1,...,/},

deg(xitd°e(%)) = ydeg, (P) implies that jo > i
then we are done. Note that it is equivalent to: for all 4 in {1,..., ¢},
deg(x™itie:(@)) = rdeg, (P) implies that ® < e, 0.

Let i be in {1,..., ¢} such that deg(z®t9%:(%)) = rdeg,(P). We deduce
that deg(maitdegt(qi)) = deg(z%o tdegt(qm))7 as xitdes:(¢:) <L gricat TX0 degi(gjo)
There are two possibilities.

o If deg,(qj,) < deg;(¢;), then deg(x®') < deg(x™) which implies that

T "<grlez xo,
o If deg,(qj,) = deg,(¢;), then deg(x®) = deg(x0). As the inequality
aitdes:(ai) <griext L0 tdeg:(d5o) holds, then % <, 0.

]

Example 4.16. Let p = 2% + (t2 — t)y + 2t3 be a polynomial in K[z, y, ]
and let s = (2,2,2,1,1,0) be a shift. We use Lemma 4.15 to find its leading
monomial:
2 2 1
P= (1 0 0 0 #*#—t 2)

22 2y y? ox oy 1
LM, (P) = (O 0 0 0 1 2)
Observe that the s-pivots of P is t> —t which column indez is y. In fact,
yt? is the leading monomial of p for the grevlex ordering.
For the following definition we refer the reader to |3, Definition 2.1].

Definition 4.17. Let I be an ideal of Klxy, ..., x,,t] and = be an admissi-
ble monomial ordering on K(xq, ..., x,,t|. The set I is t-stabilized if for all
m € lm, (I) such that t divides m and for all i in {1,...,n}, %x; € lm, (1).
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Lemma 4.18. Let I be a zero-dimensional ideal of Klxy, ..., x,,t] and =

be an admissible monomial ordering on K[z, ..., x,,t]. If the ideal I is
t-stabilized and G = (g1,...,9s) is a Grébner basis of (I,>). then for all
monomial m in lm (K[xy, ..., z,, t])\lm (1) there exists i in {1,--- s}

such that Imy (g;) = mt’ with j in N.

Proof. Suppose without loss of generality that GG is minimal. Let m be
a monomial of Im, (K[xq,...,2,,t])\Im,(I). As I is zero-dimensional, by
Proposition 2.40 there exists j in N such that m#’ lies in Im, (I). Suppose
that j is the smallest positive integer such that m#’ lies in lm, (I). As m
is not in Im, (), then j > 1. By Definition 2.36, there exists g in G such
that Im, (g) divides mt#’. If lm, (¢g) = mt’, then we are done. If there is
no f in G such that lm, (f) = m#’, there exists a monomial mg such that
Im; (g)mo = mt’ and m # 1. The variable ¢ does not divide mq because
mt’~! does not lie in Im, (I), so t divides Im, (g). As mq is not 1, there
exists i in {1,...,n} such that there exists a monomial m; with my = m;x;.
As I is t-stabilized, the monomial Mmi lies in Im, (). Observe that

Im, (g)

; xymy = mt' L.

As Mmiml lies in Im, (1), this is a contradiction with the minimality of
j. m
Theorem 1. Popov-Structure theorem on Grobner basis

Let I be an ideal of K[z1, ..., 2, t], let = geat be the grevlex ordering on the
ring K[z, ..., 2y, t] and > gep be the greviex ordering on Klzy, ..., x,]. Let
(G1,---,9¢) be a Grobner basis of (I, > gpieat) with for all i,j € {1,--- ,{},
i < j implies that the x part of Im, . (g;) is greater than the x part of
Im,_,...(9;) for =grea. Define s the shift that gives to a column the degree
of the monomial which index this column as in Lemma 4.15. Write

G; = Ma0¢4(deg(gi)»(gz‘))’>'grlﬂ’
then:
1) The matrix
Gy
G=1:
Gy

15 in s-weak-Popov form.

2) If (g1,...,g¢) is the minimal reduced Gribner basis of (I, > griext),
then G 1s in s-Popov form.

3) If I is zero-dimensional and t-stabilized and (g1, . . ., g¢) is the minimal
reduced Grobner basis of (I, > griext), then the sum of mazrimal degrees
over each column of G is equal to the cardinal of the set of monomaals

lm}grlemt (K[ml’ trt I”’ t])\ 1m>‘grlemt (]) ‘
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Proof. 1) Observe that

LMS(G1>
LM,(G) = :
LM5<G£)

By Lemma 4.15, the pivot of LM,(G;) is in the column indexed by
the z part Im,_, . (g;) for all 7 in {1,...,¢}. By our hypothesis on
the z parts of the Im,_  (g:), the matrix LM,(G) is in row echelon
form. Then by Definition 2.20, G is in s-weak-Popov form.

Let m be a monomial that is the index of a column that contain a s-
pivot. If an entry of this column that is not the s-pivot has a greater
or equal degree than the s-pivot that means that there exists g; and
g; such that Imy_,  (g;) divides one of the monomial of g;. That
is not possible because (g1,---,9¢) is the minimal reduced Grébner
basis of (I, > gieat), S0 by Definition 2.22 G is in s-Popov form.

As (g1,...,9¢) is the minimal reduced Grobner basis of (I, > grext),
the monomials in the polynomials g1, ..., g, are elements of

(i, (Kl g D\ Ime (D) (I, (901

i€l,...0

From this and Lemma 4.18 that can be applied as [ is zero-dimensional
and t-stabilized, we deduce that in the matrix GG, a column that does
not contain a s-pivot is a column of zeroes. Write G, ; the entries of
G, note that

Z max (deg,(G;;)) = Z max (deg,(Gi;)),

ie{1,....,0 ie{1,...,0
je{l,...,c} ety column j with a pivot el
as (g1, .., g¢) is minimal reduced,
= : : degt (]'m>'grleact (gZ))
1€{1,....0}

We prove that the cardinal of the set

1m>grlemt (K[x]-? R x”’ t])\ 1m>grlewt ([)

is equal to

Z degt(lmmrzm (9i))-

1€{1,....0}
By Lemma 4.18,

lm>‘grlemt <K["E17 ceey T,y t])\ 1m>-grlemf, (I) = |_| Ez
1€{1,....4}
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where E; is the set of elements of Imy, . (K[zy, ..., 2., t])\Imy ., ()
that have the same x part as Im,_, . (g;). Write

hln} 1 t(gl) - mtdegt(lm>—gﬂezt (91))
griex

with m is the z part, the cardinal of F; is deg,(lc. .., (gi)). As the
cardinal of | |, B is equal to

Z degt(lm>grlezt (9:))

ie{1,....0}

we are done

]

Proposition 4.19. Let F' = (f1,..., fi) be a sequence of polynomials of
the ring Klxq, ..., x,, t] with deg(f;) = d; and I = (f1,..., fr). Let > giea
be the grevlex ordering on K[zy, ..., z,] and > geue be the greviex ordering
on Klzy,...,z,,t]. Let d be an integer, write the K[t]-module

Ed = <{’fTLfZ | 1 € {1, C. ,€},m € Mongd_dhx})K[t]

and the matrix

7>grlea: :

Let s be the shift that gives to a monomial its degree. Let M be a s-weak-
Popov form of M. Let f be a polynomial of Eq, then there exists a row of
the matriz M that represents a polynomial g such that Im, ,  (g) divides

lm>grlemt (f) ‘

Proof. Tt is clear that the rows of M generate the K[t]-module E,;. By
Proposition 2.11 and Proposition 2.23, the rows of the matrix M also gen-

erate £y. Let f be in E;. Then there exists a row vector B with entries in
K([t] such that

MaC¢5(deg(f)7(f)))=>grlex = BM

As M is in s-weak-Popov form we can apply Proposition 2.26 and de-

duce that the s-pivot of Macy, deg(£),(£))-griee 1aS the same column index

as one of a row of M. Moreover, the degree of the s-pivots is greater or
equal than the degree of the s-pivot of this row in M. Let us call g the
polynomial that is represented by this row in M. By Lemma 4.15 that
means exactly that lm,_  (g) divides Im, . (f). O

Proposition 4.20. Let F' = (f1,..., fi) be a regqular sequence of polyno-
mials of the ring K[z, ..., x,,t] with deg(f;) = d; and I = (f1,..., fo).
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Let > gy1e be the grevlex ordering on Kz, ..., x,] and = geqt be the greviex
ordering on K[z, ..., x,,t]. Let dymax be equal to the Macaulay bound of F':

14

> (di—1)+1.

i=1
Then Algorithm 4 return a Grébner basis of (I, > grieat)-

Proof. Write the K[t]-module
Eipee = {mfi i€ {1,...,0},m € Mon<q,.,.,—d, =} )K[]-
By 3.9, the K[t]-vector space
V=(mfilie{l,....,0},m € Mon<g,,..—d4,)x

contains a Grobner basis G' of (I, >giext) aS dmax is the Macaulay bound
and as I is regular. Let g be in G, then gisin V. AsV C Ey ., g is
in Ey,,.. Write G the output of Algorithm 4. By Proposition 4.19, there
exists g in G such that Im,_,  (g) divides Im, , . (g). As G is a Grébner

basis of (I, > giest), then G is a Grébner basis of (1, > pieqt)- O

Algorithm 4 grevlex PM Lazard’s Algorithm

Input: polynomials F' = (fi,..., fo) of K[zy,...,x,,t] with deg(f;) = d;
and an integer d,qq-
Output: A Grobner basis of ((fi1,..., fo), = gricat)
- G={}
Amin = Minie ... o (deg(fi)).
for d = d,,;, 10 dypgr dO
M = Macy,(4,r))-grica
mg = vector column that contain all the monomials in x of degree
at most d in decreasing order for > ¢,
6: s = row vector of same length as m, that gives the degree of all the
monomials in = of degree at most d in decreasing order for > g ez.
7: M = the s-Popov form of M
: I=Mx mq
. G =GU{h € IlVg € GUI,9 # h,Im, ., (g) does not divide
1m>‘grlczt(h)}

10: return G
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The foolowing definition can be found in [6, Definition 25.8|

Definition 4.21. Let f,g: N — R be positive. Then we write f € O~(g),
if f(n) € g(n)(logy(3 + g(n))))°WY or equivalently, if there are constants
N,c €N such that f(n) < g(n)(logy(3 + g(n)))¢ for alln > N.

The following theorem can be found in |16, Section 5.1].

Theorem 4.22. Let M be a matriz in K[t]"™*¢ of degree at most d with
r < c and s be a positive shift. There exists a deterministic algorithm which
computes the Popov form of M using O~ (r*~c(d+ amp(s))) operations in
K.

The following result can be found in [19, Section 1].

Theorem 4.23. Let M be a matriz in K[t]"™*¢ of degree at most d with
r > c. There is a deterministic algorithm which computes a row basis of
M using O~ (¢*~rd) operations in K.

Let FF = (f1,...,f¢) be a sequence of polynomials in Kzy,...,z,].
Suppose that F' is regular Definition 2.47 and that (fi,..., f,) is zero-
dimensional. That implies that £ = n by [I1, page20,definition 19].

Let us suppose that for all ¢ in {1,...,n}, deg(f;) = d in N. Now write
the Macaulay bound:

D:1—n+2d:1+n(d—1).

=1

The goal is to compare the number of operations in K that Algorithms 2
and 4 use to compute the row echelon form and the s-Popov form of the
larger Macaulay matrices that appear in those algorithms.

1) Analysis for Algorithm 2.
As seen in Section 3.3, the number of rows is n

ber of columns is (D:Lr”) in the final Macaulay matrix called M. By
Proposition 3.15, we can suppose there is more rows than columns in

the matrix. By Theorem 3.18, it takes

w—1
rank(M)w_Zn(D—s—i-n)(D:L—n)S(D:L—n) n(D—;l—i—n)

operations in K.
2) Analysis for Algorithm 4.
In Algorithm 4, consider that x,, = ¢ to have the same situation as

above. The number of rows is n(D_T‘fﬂl_l) and the number of columns

is ("""} in the final Macaulay matrix called M, in K[t]"*¢. Observe

(D _ff“”) and the num-
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that the shift s in Algorithm 4 is such that amp(s) < D. The first
step is to compute M, a row basis of M; using

& rd < re?H(d+ D)

operations in K by Theorem 4.23. This theorem can be applied as
there is more rows than column in the Macaulay matrix by Sec-
tion 3.3. The second step is to compute the s-Popov form of M;
(which is the one of M) in K[t]2k(M)xe by Theorem 4.22 it takes
rank(M;)* " 'e(d + D) < rank(M;)c*~*(d + D)
<rc* " Yd+ D)

operations in K. We deduce that it takes

D—d+n—-—1\/D+n-1
n—1

)w_l(d + D)

operations in K to compute the s-Popov form of M;.
Let us compare these two numbers of operations.

w—1 D) =
r¢=(d+ D) n( N

(%) (P

n(D—d+Tl—1) (D—s—n—l)w*l(d_i_ D)

n—1 n—1

:(D—:Jrn) (D:L—n)W1(1D;+d)
:<(n—2)d+1) (nd;r1> ((n+1)d1—n+1)‘

This last result is less than

(57 () =\ () (G=3)

Theorem 2. Let F' = (f1,..., fo) be a reqular sequence of polynomials in
Klzy, ..., z,) with deg(f;) = di. Suppose (f1,..., fo) is zero dimensionall.
Write D = Zle(di — 1) + 1. The number of operations in K that Algo-
rithm 4 uses is

o (") ).

Proof. Tt is Item 2)

O

Conclusion: Let A and B be respectively the number of operations in
K used in Algorithms 2 and 4. Then

A <dW1) (n—l)
— > .
B — n n+1
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